Институт сервиса, туризма и дизайна (филиал) СКФУ в г. Пятигорске

		УТВЕРЖДАЮ
		Зав. кафедрой СУиИТ
		И.М.Першин
« <u>_</u>	_»	202 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущей и промежуточной аттестации

По дисциплине		РУМЕНТАЛЬНЫЕ ИНЖЕНЕРНЫХ РАСЧЕТАХ
Направление подготовки	09.03.02	
Профиль подготовки Квалификация выпускника Форма обучения Учебный план		ные системы и технологии ные системы и технологии
Объем занятий: Итого	135ч.	5 s.e.
В т.ч. аудиторных Из них:	40,5 ч.	
Лекций	13,5 ч.	
Лабораторных работ	27 ч.	
Самостоятельной работы Экзамен 3 семестр	67,5 ч. 27 ч.	
Дата разработки:		

Предисловие

1. Назначение: для проверки знаний, умений и на	авыков текущего и промежуточного
контроля.	
2. Фонд оценочных средств текущего контроля и п	ромежуточной аттестации составлен
на основе рабочей программы дисциплины в соответс	твии с образовательной программой
по направлению подготовки 09.03.02 Информац	
утвержденной на заседании учебно-методического сов	ета ФГАОУ ВО «СКФУ», протокол
№ от «» 2020 г.	
3. Разработчик	Мартиросян К.В., доцент кафедры
СУиИТ	
4. ФОС рассмотрен и утвержден на заседани	и кафедры систем управления и
информационных технологий, протокол № от «»	2020 г.
5. ФОС согласован с выпускающей кафедрой	кафедры систем управления и
информационных технологий, протокол № от «»	2020 г.
6. Проведена экспертиза ФОС. Члены экспертной	группы, проводившие внутреннюю
экспертизу:	
Председатель	
	_ Сорокин И.Д.
	_
Экспертное заключение: данные оценочные сред	• •
федерального государственного образовательного рекомендуются для использования в учебном процессе.	•
рекомендуются для использования в учесном процессе.	
«»2020 г	И М Першин

7. Срок действия ФОС один год.

Паспорт фонда оценочных средств для проведения текущего контроля и

промежуточной аттестации

По дисциплине Б1.О.03 ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА В

ИНЖЕНЕРНЫХ РАСЧЕТАХ

Направление подготовки 09.03.02

Информационные системы и технологии

Профиль подготовки Информационные системы и технологии

 Квалификация выпускника
 Бакалавр

 Форма обучения
 очная

 Учебный план
 2020

Код оцениваемой компетенции (или её части) ОПК-7, ОПК-8	Модуль, раздел, тема (в соответствии с Программой)	Тип контроля текущий	Вид контроля Устный	Компонент фонда оценочных средств Вопросы для собеседования	Количес заданий каждого шт. Базовы й	
ОПК-7, ОПК-8	Темы 1-9	текущий	Письменн ый	Темы индивидуальных заданий для письменного отчета	26	25
		промеж уточны й	устный	Вопросы к экзамену	40	30
				Вопросы для проверки уровня знаний	25	12
				Вопросы (задания) для проверки умений и навыков	15	18

Составитель	Мартиросян К.В.	
	(подпись)	<u> </u>
« »	20 г.	

Институт сервиса, туризма и дизайна (филиал) СКФУ в г. Пятигорске

		УТВЕРЖДАЮ
		Зав. кафедрой СУиИТ
		Й.М.Першин
«	>>	202 г.

Вопросы для собеседования по дисциплине инструментальные средства в инженерных расчетах

Базовый уровень:

Тема 1. Системы автоматизации инженерных расчетов

- 1. MathSoft.
- 2. Системы MathCad, S-Plus, Axum.
- 3. Программные продукты компании MathWorks, Ink. MATLAB.
- 4. Simulink. StatSoft.
- 5. Системы STATISTICA.

Тема 2. Интерактивные инструментальные средства в инженерных расчетах

- 1. Пакеты для численных расчетов. Scilab. Octave. QtOctave. FreeMat.
- 2. Пакеты для символьных вычислений. Naxima. Axiom.
- 3. Интерактивные инструментальные средства в инженерных расчетах.
- 4. Возможности интерактивных систем в инженерных расчетах.
- 5. Интерактивное применение элементов MathCad для решения инженерных задач.

Тема 5. Компьютерное моделирование физических процессов. Обработка массивов.Решение дифференциальных уравнений

- 1. Комплексное моделирование.
- 2. Графические, аналитические, численные, вычислительные методы решения задач моделирования.
- 3. Постановка задачи моделирования.
- 4. Концептуальная формулировка задачи моделирования.
- 5. Построение математической модели объекта. Выбор метода решения.

Повышенный уровень:

Тема 1. Системы автоматизации инженерных расчетов

- 1. Waterloo Maple.
- 2. Система Maple.
- 3. UniCalc.
- 4. Simulink. StatSoft.
- 5. Системы STATISTICA.

Тема 2. Интерактивные инструментальные средства в инженерных расчетах

- 1. Пакеты для решения уравнений в частных производных.
- 2. OpenFEM. Impact. SALOME. OpenFOAM. Elmer.
- 3. Возможности интерактивных систем в инженерных расчетах.
- 4. Интерактивное применение элементов MatLab
- 5. Система СПРУТ. Архитектура комплекса СПРУТ

Тема 5. Компьютерное моделирование физических процессов. Обработка массивов.Решение дифференциальных уравнений

- 1. Программная реализация модели на ЭВМ.
- 2. Обработка массивов в Mathcad.
- 3. Функции Mathcad для решения систем ОДУ.
- 4. Реализация численных методов моделирования.
- 5. Проверка адекватности модели. Анализ результатов моделирования.

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если теоретическое содержание курса освоено полностью, без пробелов; студент исчерпывающе, последовательно, четко и логически стройно излагает материал; свободно справляется с задачами, вопросами и другими видами применения знаний; использует в ответе дополнительный материал; все предусмотренные программой задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному; студент анализирует полученные результаты, проявляет самостоятельность при выполнении заданий.

Оценка «хорошо» выставляется студенту, если теоретическое содержание курса освоено полностью, необходимые практические компетенции в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения достаточно высокое. Студент твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, большинство предусмотренных программой заданий выполнено, но в них имеются ошибки. При ответе на поставленный вопрос студент допускает неточности, недостаточно правильные формулировки, наблюдаются нарушения логической последовательности в изложении программного материала.

Оценка «неудовлетворительно» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы, необходимые практические компетенции не сформированы, большинство предусмотренных программой обучения учебных заданий не выполнено, качество их выполнения оценено числом баллов, близким к минимальному.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от		
задания	максимального балла за контрольное задание)		
Отличный	100		
Хороший	80		
Удовлетворительный	60		
Неудовлетворительный	0		

3.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя собеседование по теме. Предлагаемые студенту задания позволяют проверить компетенции ОПК-7, ОПК-8.

Принципиальные отличия заданий базового уровня от повышенного заключаются в том,

что задания базового уровня предполагают наличие знаний и умений в области данных компетенций, в то время, как задания повышенного уровня предназначены для демонстрации полного и всеобъемлющего владения знаниями и навыками в области данных компетенций.

Для подготовки к данному оценочному мероприятию необходимо 30 минут.

При подготовке к ответу студенту предоставляется право пользования справочными таблицами. При проверке задания оцениваются: последовательность и рациональность выполнения; точность формулировок; знания технологий, использованные при подготовке ответа.

Составитель		Мартиросян К.В.	
	(подпись)		
« »	20 г.		

Институт сервиса, туризма и дизайна (филиал) СКФУ в г. Пятигорске

УТВЕРЖДАЮ Зав. кафедрой СУиИТ И.М.Першин

_____И.М.Першин «__» _____202_ г.

Темы индивидуальных заданий для письменного отчета по дисциплине «ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА В ИНЖЕНЕРНЫХ РАСЧЕТАХ»

Базовый уровень

Тема 1. Системы автоматизации инженерных расчетов

Таблица 1.1 – Вычисление сложного выражения			
№	Выражение		
1	$ \ln\left(y - \sqrt{\sin^3\left(x + \frac{\pi}{3}\right)}\right) \left(x - \frac{y^2 - 1}{z + \frac{x}{x + y}}\right) + \cos\left(tg^2\left(\frac{1}{\sqrt[3]{z + 1}}\right)\right). $		
2	$\ln\left(2y - \sqrt{1 - \cos^2\left(2x - \frac{\pi}{4}\right)}\right) \left(x + \frac{y^2}{z - \frac{y}{2x + z}}\right) + \sin\left(tg^2\left(\frac{1}{\sqrt[3]{x + z}}\right)\right).$		
3	$\ln\left(y - \sqrt{1 + \sqrt{\sin^3\left(x + \frac{\pi}{3}\right)}}\right) \left(x - \frac{1}{z + \frac{x}{y}}\right) + \cos\left(tg^2\left(\frac{x}{y} + \frac{1}{\sqrt[3]{z+1}}\right)\right).$		
4	$\ln\left(x+\sqrt{\sin^3\left(x+\frac{\pi}{3}\right)}\right)\left(x+\frac{y^2-1}{2+\frac{x}{z+y}}\right) + tg\left(\cos^2\left(\frac{1}{\sqrt[3]{z}+1}+2\right)\right).$		
5	$\ln\left(2x - \sqrt{1 - \sin^2\left(x + \frac{y}{z+1}\right)}\right) \left(x - \frac{y^2 + 1}{z + \frac{x-1}{y}}\right) + \cos\left(tg^2\left(\frac{1}{\sqrt[3]{z}} + x\right)\right).$		
6	$\ln\left(x+\sqrt{\operatorname{tg}^{3}\left(2xy+\frac{\pi}{3}\right)}\right)\left(x-\frac{y^{2}}{1+\frac{x}{z+y}}\right)+\sin\left(\operatorname{ctg}^{2}\left(\frac{1}{\sqrt[3]{ z }}+1\right)\right).$		
7	$\ln\left(xy - \sqrt{\sin^3\left(x + \frac{y}{xz}\right)}\right) \left(x - \frac{y^2 - 1}{2z + \frac{x}{z + y}}\right) + \cos\left(\lg^2\left(\frac{1}{\sqrt{ z + 1 }}\right)\right).$		
8	$\ln\left(yz - \sqrt{1-\sin^2\left(x+\frac{2}{y}\right)}\right)\left(x - \frac{z^2 - \sqrt{3}}{z + \frac{4}{x-y}}\right) + tg\left(\cos^2\left(\frac{4}{\sqrt[3]{x+y}}\right)\right).$		

$$9 \qquad \ln\left(2x - \sqrt{\sin^3\left(y + \frac{\pi}{3}\right)}\right) \left(x - \frac{y^2 + 1}{\frac{z+1}{xy} - 1}\right) + \sin\left(\arctan^2\left(\frac{1}{\sqrt[3]{z} + 2}\right)\right).$$

$$10 \qquad \ln\left(xy - \sqrt{\sin^3\left(\frac{x+y}{z^2}\right)}\right) \left(\frac{y^2 - 1}{z + \frac{3}{x+y}} - 4\right) + \cos\left(\sin^2\left(\frac{1}{\sqrt[3]{z} + \frac{1}{x}}\right)\right).$$

Тема 2. Интерактивные инструментальные средства в инженерных расчетах Таблица 1.2 – Вычисление функции для заданных значений аргумента

Ta	блица 1.2 – Вычисление функции для заданных значений аргумента
№	Функция
	x+2, если $0 < x < 2$,
	$y(x) = \begin{cases} 2, & \text{если } 2 \le x < \sqrt{3\pi}, \end{cases}$
1	$y(x) = \begin{cases} x+2, & \text{если } 0 < x < 2, \\ 2, & \text{если } 2 \le x < \sqrt{3\pi}, \\ \sin(x^2+1), & \text{иначе} \end{cases}$
	лля x : -3.5 : 1.5: 3.2: 5: $\sqrt{\pi}$: $\ln \sqrt{3}$: $\log 10$: $\sin 8$.
	(5. если x < -2 или x ≥ 4,
	$y(x) = \begin{cases} 5, & \text{если } x < -2 \text{ или } x \ge 4, \\ x - 2, & \text{если } -1 \le x < \sqrt{\pi}, \\ \cos(x^3 + 1), & \text{иначе} \end{cases}$
2	$\cos(x^3+1)$, whave
	$\begin{cases} 2x - 2 & \text{ecm } 0 \le x \le 3 \\ \end{cases}$
	27 2, com 0 2 x 3,
3	для x : $-3,5$; $-1,5$; $1,2$; $2\sqrt{\pi}$; $3,9$; 5 ; $\ln \sqrt{3}$; $\log_3 11$; $\cos 8$. $y(x) = \begin{cases} 2x-2, & \text{если } 0 \le x < 3, \\ \sqrt{x}, & \text{если } 3 \le x < \sqrt{2\pi}, \\ \cos(x^2+1), & \text{иначе} \end{cases}$
3	$(\cos(x^2+1), \text{ whave}$
	для x : $-3,2$; $2,5$; $3,2$; 5 ; $\sqrt{\pi}$; $\ln \sqrt{8}$; $\log_4 10$; $\cos 5$; 2^3 .
	$y(x) = \begin{cases} 6, & \text{если } -1 \le x < 1, \\ \sqrt{x+1}, & \text{если } 1 \le x \le \sqrt{2\pi}, \\ ctg(x^2 - 2), & \text{иначе} \end{cases}$
	$y(x) = \sqrt{x+1}$, если $1 \le x \le \sqrt{2\pi}$,
4	$ctg(x^2-2)$, иначе
	для x : -4 ; 0,5; 1; 6; $\sqrt{\pi}$; $\ln \sqrt[3]{7}$; $\log_2 13$; $\cos \frac{\pi}{5}$.
	$y(x) = \begin{cases} \sqrt{ x+1 }, & \text{если } -4 < x \le 2, \\ 2x, & \text{если } 2 < x < \sqrt{3\pi}, \\ \text{tg}(x^2+1), & \text{иначе} \end{cases}$
	$y(x) = \begin{cases} 2x, & \text{если } 2 < x < \sqrt{3\pi}, \end{cases}$
5	$tg(x^2+1)$, иначе
	для x : $-7,5$; $0,5$; $3,2$; 5 ; $\sqrt{2\pi}$; $\ln \sqrt{7}$; $\log_5 36$; $\cos \frac{\pi}{12}$.
	$y(x) = \begin{cases} \ln 1 - x^2 , & \text{если } x < -2 \text{ или } x \ge 7, \\ x - 2, & \text{если } 2 \le x < \sqrt{3\pi}, \\ \cos(x^2 + \sqrt{3}), & \text{иначе} \end{cases}$
	$y(x) = \{x - 2, ecnu \ 2 \le x < \sqrt{3\pi}, $
6	$\cos(x^2 + \sqrt{3})$, иначе
	(
	для x : $-3,5$; $1,5$; $2,2$; 5 ; $2\sqrt{\pi}$; $\ln\sqrt{7}$; $\log_3 13$;
	$y(x) = \begin{cases} \sqrt[3]{x} - 2, & \text{если } -2 < x \le 1, \\ 3, & \text{если } 1 < x < \sqrt{2\pi}, \\ \cos(x^2 + 3), & \text{иначе} \end{cases}$
	$y(x) = \begin{cases} 3, & \text{если } 1 < x < \sqrt{2\pi}, \end{cases}$
7	$\cos(x^2+3)$, иначе
	для x : $-3,5$; $0,5$; $3,2$; 5 ; $\sqrt[3]{3\pi}$; $\ln \sqrt{3}$; $\log_4 11$; arctg 8.

8
$$y(x) = \begin{cases} \sqrt{3}, & \text{если } x < -2 \text{ или } x \ge 8, \\ x - 2, & \text{если } 1 \le x < \sqrt{2\pi}, \\ \text{tg}(x^3 + 4), & \text{иначе} \end{cases}$$

$$\text{для } x: \quad -3,5; \ 1,5; \ 3,2; \ 9; \ \sqrt{\pi}; \ \ln \sqrt{5}; \ \log_4 11; \ \operatorname{arccos} \ 0,3.$$

$$y(x) = \begin{cases} \operatorname{arcsin}(x+2), & \text{если } -3 \le x < -1, \\ 2x, & \text{если } -1 \le x < \sqrt{\pi+1}, \\ \cos(\sqrt{3}x^2), & \text{иначе} \end{cases}$$

$$\text{для } x: \quad -4,5;-1; \ 2; \ 5; \ \sqrt{\pi+0,5}; \ \ln \sqrt{7}; \ \log_4 12; \ \operatorname{tg} 7,5.$$

$$y(x) = \begin{cases} \ln(x+2), & \text{если } 0 < x < 2, \\ 2x, & \text{если } x \le -2 \ \text{или } x > \sqrt{3\pi}, \\ \cos(x^2+1), & \text{иначе} \end{cases}$$

$$\text{для } x: \quad -3,5; \ -1; \ 1,5; \ 5; \ \sqrt{\pi}; \ \ln 2\sqrt{3}; \ \log_3 11; \ \sin 12.$$

Тема 3. Инструментальные средства моделирования и проектирования в инженерных расчетах

Таблица 1.3 – Построение функции для заданных значений аргумента

No	Функция
1	$\sqrt{\frac{x-1}{x+2}}$ x : -3,5; 1,5; 3,2; 5; $\sqrt{\pi}$; $\ln \sqrt{3}$; $\log_4 10$; $\sin 8$.
2	$\ln \frac{x+1}{x-2}$ x: -4;-1; 0; 2; 5.
3	$\sin\sqrt{\frac{x-3}{x+1}}$ x: -6;-1; 2; 3; 7,5.
4	$\sqrt{\frac{1-x}{x+7}}$ x: -10;-7; 0,5; 1; 5,2.
5	$\cos\sqrt{\frac{x+1}{x-4}}$ $x: -4; -1; 1,5; 4; 7,8.$
6	$ \ln \frac{1}{(x-1)(x+2)} \qquad x: -4; -2; 0,5; 1; 5,7. $ $ \sqrt{(x-2)(x+8)} \sin \frac{1}{x-2} \qquad x: -14; -8; 0,5; 2; 5,1. $
7	$\sqrt{(x-2)(x+8)}\sin\frac{1}{x-2}$ $x: -14; -8; 0,5; 2; 5,1.$
8	$\sqrt{\frac{x-1}{x+4}}\cos\frac{2\pi}{x-2} \qquad x: -5, 6; -4; -2; 1; 2; 3, 5.$
9	$\sin \frac{\sqrt{(x-2)(x+1)}}{x-4} \qquad x: -4; -1; \ 0,5; \ 2; \ 4; \ 5,8.$
10	$\sqrt{\frac{\sqrt{(x-2)(x+1)}}{x+2}}$ $x: -4; -2; -1; 1,5; 2; 4,5.$

Тема 4. Инструментальные средства визуализации инженерных расчетов

1. Постройте таблицу значений функции для указанного диапазона х с заданным шагом изменения ординаты (табл.2.2).

Таблица 2.2 – Построение таблицы значений функции на диапазоне

No	Функция f(x)	Диапазон х	Шаг изменения х
1	$f(x) = x^3 - x^2 - 6x + 3$	[-1; 2]	h = 0,5.

2	$f(x) = x^3 - 5x^2 + x + 4.$	[-2; 3]	h = 1,5.
3	$f(x) = x^3 - 5x^2 - 2x + 18.$	[-2;-1]	h = 0.25.
4	$f(x) = -x^3 - 4x^2 - x + 2.$	[-3;0]	h = 0,5.
5	$f(x) = -x^3 + 5x^2 - x - 7.$	[-1;2]	h = 0,6.
6	$f(x) = x^3 + x^2 - 16x - 18.$	[-4;-1]	h = 0,4.
7	$f(x) = x^3 + 6x^2 - x - 25.$	[-3;-1]	h = 0,35.
8	$f(x) = -x^3 - 5x^2 - 2x + 6.$	[-3;-1]	h = 0,3.
9	$f(x) = -x^3 - 4x^2 - x + 4.$	[-1; 2]	h = 0,6.
10	$f(x) = -x^3 - 4x^2 + 11x + 25.$	[-2; 2]	h = 0,7.

Тема 5. Компьютерное моделирование физических процессов. Обработка массивов.Решение дифференциальных уравнений

Найдите все точки пересечения графика функции с линией, задаваемой уравнением из таблицы 2.3.

Таблица 2.3 – Построение пересечения функции с линией

$N_{\underline{0}}$	Функция f(x)	Уравнение линии
1	$f(x) = x^3 - x^2 - 6x + 3$	$(x-1)^2 + y^2 = 4.$
2	$f(x) = x^3 - 5x^2 + x + 4.$	$x^2 + y^2 = 8.$
3	$f(x) = x^3 - 5x^2 - 2x + 18.$	$y^2 - 5x^2 = 38.$
4	$f(x) = -x^3 - 4x^2 - x + 2.$	$16x^2 - y^2 = 1.$
5	$f(x) = -x^3 + 5x^2 - x - 7.$	$y^2 - 20x^2 = 10.$
6	$f(x) = x^3 + x^2 - 16x - 18.$	$(x-2)^2 + y^2 = 30.$
7	$f(x) = x^3 + 6x^2 - x - 25.$	$y^2 - 20x^2 = 40.$
8	$f(x) = -x^3 - 5x^2 - 2x + 6.$	$y^2 - 30x^2 = 10.$
9	$f(x) = -x^3 - 4x^2 - x + 4.$	$2(x+1)^2 + y^2 = 9.$
10	$f(x) = -x^3 - 4x^2 + 11x + 25.$	$5(x-2)^2 + y^2 = 106.$

Тема 6. Решение задач оптимизации и линейного программирования. Функции работы с файлами

В соответствии с таблицей 3.1 выполнить линейную и сплайновую интерполяции, построить графики линейной и сплайновой интерполяции, выполнить настройку вида графиков, сделать соответствующие скриншоты.

Таблица 3.1 – Исходные данные для расчетов

Вариан	1	2	3	4	5	6	7	8	9
ТЫ									
Исходн	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 4 \end{bmatrix}$	[1 5]	$\begin{bmatrix} 2 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \end{bmatrix}$	$\lceil 1 \ 2 \rceil$	$\begin{bmatrix} 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 5 \end{bmatrix}$
ые	2 3	5.8	6.3	3 5	3 5	1 6	3.4	1 7	1 7
данные	2 3	100	10.3	100	10.0	14 0	10 4	4 1	4 1
	4 6	9 3	2 4	4 9	5 7	6 8	5 6	5 8	5 8
	8 5	1 4	7 1	8 1	7 9	9 0	8 9	6 9	6 9

Тема 7. Инструменты визуализации многомерных данных

В соответствии с индивидуальным заданием построить объемную фигуру.

Варианты заданий указаны в таблице 6.1, на рисунке 6.1 показано, как построить данный график.

Таблица 6.1 – Индивидуальные задания

3.0	. .	
No	Оункция	
- · · -	+ y IIKHIII	

1	H(u,v)=3(u2*v)
2	$H(u,v)=3\sin(u^*v)$
3	$H(u,v)=7\cos(u^*v)$
4	$H(u,v)=\cos(u^*v)$
5	H(u,v)=tg(u*v)
6	$H(u,v)=\sin(u^*v)$

Тема 8. Символьные вычисления. Табличная интерполяция и аппроксимация.
Статистическая обработка данных

В соответствии с индивидуальным заданием построить график поверхности, выполнить форматирование построенного графика, применив алгоритм функциональной окраски и удаление невидимых линий. Сформировать отчёт, включающий описание процесса построения графика и соответствующие скриншоты

Таблица 5.1 – Индивидуальные задания

No	Функция	№	Функция
1	$z(x,y)=3\cos(x^*y)$	2	z(x,y)=x2*y
3	$z(x,y)=\sin(x^*y)$	4	$z(x,y)=5\cos(x^*y)$
5	z(x,y)=tg(x*y)	6	z(x,y)=2x+y2

Тема 9. Программирование в инженерных расчетах. Прогнозирование и временные ряды

В соответствии с индивидуальным заданием построить модель линейной регрессии. Исходные данные для выполнения задания помещены в таблице 4.1

Таблица 4.1 – Индивидуальные задания

No	Заданные вектора	$N_{\underline{0}}$	Заданные вектора
1	VX=[3, 2, 4, 5]	4	VX=[7, 18, 3, 11]
	VY=[7, 8, 9, 5]		VY=[1, 5, 3, 9]
2	VX=[12, 14, 7, 11]	5	VX=[24, 9, 12, 27]
	VY=[6, 8, 10, 15]		VY=[9, 3, 17, 11]
3	VX=[3, 9, 12, 14]	6	VX=[4, 15, 2, 19]
	VY=[7, 9, 11, 13]		VY=[11, 17, 1, 13]

Повышенный уровень

Тема 1. Системы автоматизации инженерных расчетов

В соответствии с заданием решить задачу «Полет камня» без учета сопротивления воздуха и с учетом сопротивления воздуха..

<u>No</u>	Х0, м	Y0, м	V, M/c	Угол,
варианта				град
1	1	1	10	30
2	2	1	25	45
3	1	2	30	15
4	2	2	15	30
5	3	1	10	25
6	1	3	25	30
7	3	3	20	45
8	4	5	10	15
9	1	0	20	35
10	0	10	30	45

Тема 2. Интерактивные инструментальные средства в инженерных расчетах

В соответствии с индивидуальным заданием построить диаграмму Байеса, оценить вероятности наступления состояний системы, предложить несколько альтернативных вариантов.

Таблица 8.1 – Индивидуальные задания

$N_{\underline{0}}$	Задача	Исходные данные
1	Выбор комплектующих при сборке	Параметры и цена комплектующих
	персонального компьютера	
2	Выбор ноутбука	Параметры ноутбука и его цена
3	Выбор санатория	Местонахождение и профиль санатория,
		цена лечения и пребывания в санаторно-
		курортном комплексе
4	Постановка врачебного диагноза	Определение базовой симптоматики,
		анамнез, уточнения к базовой
		симптоматике
5	Разработка бизнес-плана	Определение исходных и конечных
		параметров: финансы, выпуск
		продукции, кадровая политика,
		инфраструктура
6	Унифицированный алгоритм выбора	Параметры товара, цена товара
	товара	
7	Алгоритм выбора товара на площадке-	Параметры товара, цена товара,
	интеграторе	репутация поставщика, условия
		поставщика
8	Выбор одежды по погоде	Исходный набор одежды и аксессуаров,
		прогноз погоды, температура на улице,
		наличие дождя/снега, сезон
9	Выбор ужина в ресторане	Позиции меню, особенности
		пользователя (диета, предпочтения)
10	Выбор специализированного магазина и	Номенклатура каталога, цены, скидки,
	выбор чая в специализированном	параметры доставки
	магазине	

Тема 3. Инструментальные средства моделирования и проектирования в инженерных расчетах

- 1. Постройте таблицу значений функции для указанного диапазона х с заданным шагом изменения ординаты (табл.2.2).
 - 2. Постройте график функции из таблицы 2.2, выбрав эффективный диапазон.
 - 3. Найдите все значения, при которых f(x)=0.
 - 4. найдите точки экстремума функции и значение функции в этих точках.
- 5. Задавая значение переменной а, постройте касательную к графику функции в точке с абсциссой х=а.

Таблица 2.2 – Построение таблицы значений функции на диапазоне

№	Функция f(x)	Диапазон х	Шаг изменения х
1	$f(x) = x^3 - x^2 - 6x + 3$	[-1; 2]	h = 0.5.
2	$f(x) = x^3 - 5x^2 + x + 4.$	[-2; 3]	h = 1,5.
3	$f(x) = x^3 - 5x^2 - 2x + 18.$	[-2;-1]	h=0,25.
4	$f(x) = -x^3 - 4x^2 - x + 2.$	[-3;0]	h = 0.5.
5	$f(x) = -x^3 + 5x^2 - x - 7.$	[-1;2]	h = 0,6.
6	$f(x) = x^3 + x^2 - 16x - 18.$	[-4;-1]	h = 0,4.

7	$f(x) = x^3 + 6x^2 - x - 25.$	[-3;-1]	h = 0.35.
8	$f(x) = -x^3 - 5x^2 - 2x + 6.$	[-3;-1]	h = 0,3.
	$f(x) = -x^3 - 4x^2 - x + 4.$	[-1; 2]	h = 0,6.
10	$f(x) = -x^3 - 4x^2 + 11x + 25.$	[-2; 2]	h = 0,7.

Тема 4. Инструментальные средства визуализации инженерных расчетов

Найдите все точки пересечения графика функции в таблице 2.2 с линией, задаваемой уравнением из таблицы 2.3.

Таблица 2.3 – Построение пересечения функции с линией

$N_{\underline{0}}$	Функция f(x)	Уравнение линии
1	$f(x) = x^3 - x^2 - 6x + 3$	$(x-1)^2 + y^2 = 4.$
2	$f(x) = x^3 - 5x^2 + x + 4.$	$x^2 + y^2 = 8.$
3	$f(x) = x^3 - 5x^2 - 2x + 18.$	$y^2 - 5x^2 = 38.$
4	$f(x) = -x^3 - 4x^2 - x + 2.$	$16x^2 - y^2 = 1.$
5	$f(x) = -x^3 + 5x^2 - x - 7.$	$y^2 - 20x^2 = 10.$
6	$f(x) = x^3 + x^2 - 16x - 18.$	$(x-2)^2 + y^2 = 30.$
7	$f(x) = x^3 + 6x^2 - x - 25.$	$y^2 - 20x^2 = 40.$
8	$f(x) = -x^3 - 5x^2 - 2x + 6.$	$y^2 - 30x^2 = 10.$
9	$f(x) = -x^3 - 4x^2 - x + 4.$	$2(x+1)^2 + y^2 = 9.$
10	$f(x) = -x^3 - 4x^2 + 11x + 25.$	$5(x-2)^2 + y^2 = 106.$

Тема 5. Компьютерное моделирование физических процессов. Обработка массивов.Решение дифференциальных уравнений

В соответствии с таблицей 3.1 выполнить сплайновую интерполяции, построить графики линейной и сплайновой интерполяции, выполнить настройку вида графиков, сделать соответствующие скриншоты.

Таблица 3.1 – Исходные данные для расчетов

Вариан	1	2	3	4	5	6	7	8	9
ты									
Исходн	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 4 \end{bmatrix}$	$\begin{bmatrix} 1 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 5 \end{bmatrix}$
ые	2 3	5 8	6 3	3 5	3 5	4 6	3 4	4 7	4 7
данные	1 6	0 2	2 4	1 0	5 7	6 0	5 6	5 0	5 0
	4 0	9 3		4 9	5 1	0 0	10 0	0 0	0 0
	[8 5]	$\lfloor 1 \ 4 \rfloor$	[7 1]	[8 1]	[7 9]	[9 0]	[8 9]	[6 9]	[6 9]

Tема 6. Решение задач оптимизации и линейного программирования. Функции работы с файлами

В соответствии с индивидуальным заданием построить модель линейной регрессии. Исходные данные для выполнения задания помещены в таблице 4.1

Таблица 4.1 – Индивидуальные задания

No	Заданные вектора	№	Заданные вектора
1	VX=[3, 2, 4, 5]	4	VX=[7, 18, 3, 11]
	VY=[7, 8, 9, 5]		VY=[1, 5, 3, 9]
2	VX=[12, 14, 7, 11]	5	VX=[24, 9, 12, 27]
	VY=[6, 8, 10, 15]		VY=[9, 3, 17, 11]
3	VX=[3, 9, 12, 14]	6	VX=[4, 15, 2, 19]
	VY=[7, 9, 11, 13]		VY=[11, 17, 1, 13]

Тема 7. Инструменты визуализации многомерных данных

В соответствии с индивидуальным заданием построить график поверхности, выполнить форматирование построенного графика, применив алгоритм функциональной окраски и удаление невидимых линий.

Таблица 5.1 – Индивидуальные задания

$N_{\underline{0}}$	Функция	No	Функция
1	$z(x,y)=3\cos(x^*y)$	2	z(x,y)=x2*y
3	$z(x,y)=\sin(x^*y)$	4	$z(x,y)=5\cos(x^*y)$
5	z(x,y)=tg(x*y)	6	z(x,y)=2x+y2

Тема 8. Символьные вычисления. Табличная интерполяция и аппроксимация.
Статистическая обработка данных

В соответствии с индивидуальным заданием построить объемную фигуру.

Таблица 6.1 – Индивидуальные задания

№	Функция
1	H(u,v)=3(u2*v)
2	$H(u,v)=3\sin(u^*v)$
3	$H(u,v)=7\cos(u^*v)$
4	$H(u,v)=\cos(u^*v)$
5	$H(u,v)=tg(u^*v)$
6	$H(u,v)=\sin(u^*v)$

Тема 9. Программирование в инженерных расчетах. Прогнозирование и временные ряды В соответствии с индивидуальным заданием построить объемную фигуру.

Таблица 6.2 – Индивидуальные задания

No	Функции	No	Функции
1	$f(x)=\cos(x^2)$	4	$f(x)=3\cos(x2)$
	G(u,v)=f(u)*sin(v)		$G(u,v)=f(u)*4\sin(v)$
	H(u,v)=f(u)*cos(v)		H(u,v)=f(u)*6cos(v)
2	f(x)=3(x2)	5	$f(x)=3x*\cos(x2)$
	G(u,v)=f(u)*v		G(u,v)=f(u)*(v2)
	$H(u,v)=f(u)*3\cos(v)$		H(u,v)=f(u)*3(v)
3	f(x)=tg(x2)		
	G(u,v)=f(u)*(v2)		
	H(u,v)=f(u)*3(v)		

Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если теоретическое содержание курса освоено полностью, без пробелов; студент исчерпывающе, последовательно, четко и логически стройно излагает материал; свободно справляется с задачами, вопросами и другими видами применения знаний; использует в ответе дополнительный материал; все предусмотренные программой задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному; студент анализирует полученные результаты, проявляет самостоятельность при выполнении заданий.

Оценка «хорошо» выставляется студенту, если теоретическое содержание курса освоено полностью, необходимые практические компетенции в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения достаточно высокое. Студент твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, большинство предусмотренных программой заданий выполнено, но в них имеются ошибки. При ответе на поставленный вопрос студент допускает неточности, недостаточно правильные формулировки, наблюдаются нарушения логической последовательности в изложении программного материала.

Оценка «неудовлетворительно» выставляется студенту, если он не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы, необходимые практические компетенции не сформированы, большинство предусмотренных программой обучения учебных заданий не выполнено, качество их выполнения оценено числом баллов, близким к минимальному.

2. Описание шкалы оценивания

Максимально возможный балл за весь текущий контроль устанавливается равным **55.** Текущее контрольное мероприятие считается сданным, если студент получил за него не менее 60% от установленного для этого контроля максимального балла. Рейтинговый балл, выставляемый студенту за текущее контрольное мероприятие, сданное студентом в установленные графиком контрольных мероприятий сроки, определяется следующим образом:

Уровень выполнения контрольного	Рейтинговый балл (в % от
задания	максимального балла за контрольное задание)
Отличный	100
Хороший	80
Удовлетворительный	60
Неудовлетворительный	0

3.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура проведения данного оценочного мероприятия включает в себя защиту отчета по лабораторной работе.

Предлагаемые студенту задания позволяют проверить компетенции ОПК-7, ОПК-8. Принципиальные отличия заданий базового уровня от повышенного заключаются в том, что задания базового уровня предполагают наличие знаний и умений в области данных компетенций, в то время, как задания повышенного уровня предназначены для демонстрации полного и всеобъемлющего владения знаниями и навыками в области данных компетенций.

Сост	авитель			Мартиросян К.В.
«	»	20	г.	

Институт сервиса, туризма и дизайна (филиал) СКФУ в г. Пятигорске

		УТВЕРЖДАЮ
		Зав. кафедрой СУиИТ
		И.М.Першин
<u>~_</u>	_»	202_ г.

Вопросы к экзамену по дисциплине ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА В ИНЖЕНЕРНЫХ РАСЧЕТАХ Базовый уровень

Знать

- 1. Системы автоматизации инженерных расчетов.
- 2. MathSoft. Системы MathCad, S-Plus, Axum.
- 3. Программные продукты компании MathWorks, Ink.
- 4. MATLAB.
- 5. Simulink. StatSoft. Системы STATISTICA.
- 6. Waterloo Maple. Система Maple. UniCalc.
- 7. Интерактивные инструментальные средства в инженерных расчетах.
- 8. Возможности интерактивных систем в инженерных расчетах.
- 9. Интерактивное применение элементов MathCad и MatLab для решения инженерных задач.
- 10. Система СПРУТ. Архитектура комплекса СПРУТ.
- 11. Решение задач оптимизации и линейного программирования.
- 12. Функции работы с файлами
- 13. Постановка задачи оптимизации.
- 14. Целевая функция и система ограничений.
- 15. Поиск кратчайшего пути.
- 16. Транспортная задача.
- 17. Игровые модели.
- 18. Задачи линейного программирования.
- 19. Задачи динамического программирования.
- 20. Множество состояний системы и целевая функция.
- 21. Поиск эффективного пути в задачах динамического программирования.
- 22. Применение задач линейного и динамического программирования в сфере промышленности и в бизнес-приложениях.
- 23. Функции работы с файлами в MathCad.
- 24. Характеристики инструментальных средств в инженерных расчетах.
- 25. Применение инструментов моделирования информационных систем.

Уметь.

26. Компьютерное моделирование физических процессов.

Владеть

- 27. Обработка массивов.
- 28. Решение дифференциальных уравнений
- 29. Комплексное моделирование.
- 30. Графические, аналитические, численные, вычислительные методы решения задач моделирования.
- 31. Постановка задачи моделирования.
- 32. Концептуальная формулировка задачи моделирования.
- 33. Построение математической модели объекта. Выбор метода решения.
- 34. Программная реализация модели на ЭВМ.
- 35. Программная реализация математической модели «Бросок камня».

- 36. Обработка массивов в Mathcad.
- 37. Функции Mathcad для решения систем ОДУ.
- 38. Реализация численных методов моделирования.
- 39. Проверка адекватности модели.
- 40. Анализ результатов моделирования.

Повышенный уровень

Знать

- 1. Системы моделирования в нотации IDEF.
- 2. ERD-моделирование.
- 3. Программные пакеты CAD/CAM/CAE систем.
- 4. Инструментальные средств организационного моделирования.
- 5. Система БИГ-Мастер.
- 6. Процессы-функции в организационном моделировании.
- 7. Инструментальные средства моделирования в инженерных расчетах
- 8. Инструментальные средства визуализации инженерных расчетов
- 9. Понятие визуализации. Методы визуализации.
- 10. Типы визуализации данных. Покомпонентное сравнение. Позиционное сравнение. Временное сравнение. Корреляционное сравнение.
- 11. Инструментальные средства визуализации инженерных расчетов.
- 12. Специализированные пакеты визуализации инженерных расчетов.

Уметь,

13. Инструменты визуализации многомерных данных.

Владеть

- 14. Свойства скалярных и векторных полей.
- 15. Визуализация скалярных полей.
- 16. Визуализация экспериментальных данных.
- 17. Методы решения задач триангуляции.
- 18. Визуализация векторных полей.
- 19. Множества Жюлиа, множество Мандельброта и их компьютерное представление.
- 20. Системы интегрированных функций.
- 21. Фрактал как аттрактор СИФ.
- 22. Качество визуализации и сложные распределения данных.
- 23. Применение методов визуализации данных
- 24. Символьные вычисления в Mathcad.
- 25. Табличная интерполяция и аппроксимация в Mathcad.
- 26. Статистическая обработка данных в Mathcad
- 27. Теоретические основы интерполяции и аппроксимации.
- 28. Кусочно-линейная и сплайновая аппроксимации в MathCad.
- 29. Регрессия и метод наименьших квадратов в MathCad..
- 30. Применение инструментальных средств проектирования

1. Критерии оценивания компетенций

Оценка «отлично» выставляется студенту, если он знает методы работ по доводке и технологий; работоспособности освоению информационных методы поддержки информационных систем и технологий; Показывает умение выполнять работы по доводке и освоению информационных технологий; поддерживать работоспособность информационных систем и технологий; демонстрирует навыки владения методами работ по освоению информационных технологий; инструментами поддержки работоспособности информационных систем и технологий.

Оценка «хорошо» выставляется студенту, если он имеет знания и практические навыки применения средств реализации информационных технологий; умеет разрабатывать

весь спектр средств реализации информационных технологий; Владеет инструментами разработки средств реализации информационных технологий в полной мере.

Оценка «удовлетворительно» выставляется студенту, если знания средств реализации информационных технологий имеются, но практических навыков нет; он умеет разрабатывать отдельные средства реализации информационных технологий и владеет отдельными инструментами разработки средств реализации информационных технологий.

Оценка «неудовлетворительно» выставляется студенту, если отсутствуют знания средств реализации информационных технологий; отсутствует умение разрабатывать средства реализации информационных технологий; студент не владеет инструментами разработки средств реализации информационных технологий.

2. Описание шкалы оценивания

Промежуточная аттестация в форме экзамена предусматривает проведение обязательной экзаменационной процедуры и оценивается 40 баллами из 100. В случае, если рейтинговый балл студента по дисциплине по итогам семестра равен 60, программой автоматически добавляется 32 премиальных балла и выставляется оценка «отлично» Положительный ответ студента на экзамене оценивается рейтинговыми баллами в диапазоне от 20 до 40 ($20 \le S_{3K3} \le 40$), оценка меньше 20 баллов считается неудовлетворительной.

Шкала соответствия рейтингового балла экзамена 5-балльной системе

Рейтинговый балл по дисциплине	Оценка по 5-балльной системе
35 – 40	Отлично
28 – 34	Хорошо
20 – 27	Удовлетворительно

Итоговая оценка по дисциплине, изучаемой в одном семестре, определяется по сумме баллов, набранных за работу в течение семестра, и баллов, полученных при сдаче экзамена:

Шкала пересчета рейтингового балла по дисциплине в оценку по 5-балльной системе

Рейтинговый балл по дисциплине	Оценка по 5-балльной системе
88 – 100	Отлично
72 – 87	Хорошо
53 – 71	<i>Удовлетворительно</i>
<53	Неудовлетворительно

3.Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний

Процедура проведения **экзамена** осуществляется в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования в СКФУ.

В экзаменационный билет включаются два вопроса и одно практическое задание. Для подготовки по билету отводится 30 минут.

При подготовке к ответу студенту предоставляется право пользования справочными таблицами.

При проверке практического задания, оцениваются: последовательность и рациональность выполнения; точность вычислений; знание технологий, использованное в ходе выполнения задания.

Составитель	Мартиросян К.В. «	« »	2020 г.

Оценочный лист

No	Ф.И.О. студента			Пај	раметры со	- стояния образ	ованности				
п/п		Предметно-информационная составляющая образованности			Деятельностно-коммуникативная составляющая образованности			Ценностно- ориентационная составляющая образованности			
		Контроль- но-	Общеучебнь	учебные умения и навыки		Уровень развития	Умение работать с	Гра- мот-	Умение использо-	Уро- вень	ый б
		методиче- ский срез	Умение анализирова ть	Умение доказы- вать	Умение делать выводы	устной речи	=	ность	вать получен- ные знания в повседнев-	аде- кват- ности само- оценки	Итоговый балл
1.									ной жизни		
2.											
3.											
4.											
5.											
6.											
7.											
8.											
9.											
10.											